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Effects of Strain-Gradient on the Stress-Concentration at a 
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S U M M A R Y  
The solution of the plane-strain problem of a circular cylindrical hole in a field of uniaxial tension is obtained in the 
linear theory of elasticity in which the potential energy function depends on both the strain and the gradient of the 
strain. The stress-concentration factor at the surface of the cylindrical hole and the stress-concentration away from 
the hole are found and they are compared with the analogous results obtained in couple-stress theory and in classical 
elasticity. 

Introduction 

The classical theory of elasticity of an elastic continuum presupposes that the local state of 
stress at a material point depends on the corresponding local state of deformation. Such a 
theory does not accommodate the effects of the atomic structure of solids. 

Extensions of the conventional theory which intend to have the local state of stress depend 
on the local state of deformation and on the deformations in a vicinity of the point in question, 
began with Cauchy [1]**. The work of Cauchy remained unnoticed until, in 1960, interest 
in such extended theories was revived by the publications of Aero and Kuvshinskii [2], 
Grioli [3], Rajagopal [4] and Truesdell and Toupin [5]. All these authors took into account 
only that part of the first gradient of the strain which constitutes the gradient of the rotation 
i.e., eight of the eighteen components of the first strain-gradient tensor. This theory is the one 
Toupin [6] later called the "Cosserat theory with constrained rotations" while Mindlin and 
Tiersten [7] and Koiter [8], called it the "couple stress theory". The augmentation of the classi- 
cal theory of elasticity through the inclusion, in the strain energy function, of the complete first 
gradient of the strain was achieved by Toupin [9]. 

Later, Mindlin [10] extended the classical theory to include the second gradient of the 
strain while a further extension, to include all gradients of the strain, was accomplished by 
Green and Rivlin [11] who called their work the theory of"simple force and stress multipoles". 
In the language of Toupin [6], the first strain-gradient theory is called the theory of materials 
of "grade 2", the second strain-gradient theory--the theory of materials of"grade 3", etc. ; here 
the "grade" indicates the order of the space gradients operating on the displacement in the 
particular theory. 

In addition to the strain-gradient theories, another type of extension of the conventional 
theory exists. The Cosserat brothers [12] introduced a theory of mechanics of continuous 
media in which a micro-element is embedded in each macro-element (material particle) of the 
continuum such that the rotation of each micro-element may be different from the local rotation 
of the medium. This is equivalent to a theory of continuous media each point of which has the 
six degrees of freedom of a rigid body. In the classical theory, a material point has only the 
three degrees of freedom corresponding to its position in space. If the micro-elements are 
"frozen" in the corresponding local macro-elements i.e., if the micro rotation is constrained to 
equal the local rotation of the continuum in the usual sense of elasticity and fluid dynamics, the 

* As of Oct. 1970, The Negev University, Beer-Sheva, Israel. 
** The existence of this paper was brought to the attension of the first author by R. D. Mindlin. 
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theory which results is the above mentioned couple-stress theory, or the "Cosserat theory with 
constrained rotations". An extension of the Cosserat theory in which the micro-elements can 
deform independently of the local deformation of the continuum, was accomplished by Mindlin 
[-13], while a more general theory of this type was given by Green and Rivlin [,14]. In the 
language of Eringen [15], the Cosserat theory is referred to as the theory of "micropolar 
elasticity" and the couple-stress theory is called the theory of "micropolar elasticity under 
constrained motion". The equations governing the first strain-gradient theory can be obtained 
from the micrb-structure equations as exhibited by Mindlin [13]. 

In the present paper we consider the first strain-gradient theory. The general non-linear 
theory was first given by Toupin [9]. Subsequently, Mindlin [131 derived the linear version of 
the theory in three-forms--distinguished by different groupings of the eighteen additional vari- 
ables in the strain energy function. The constitutive equations for the three forms contain five 
new material constants in addition to the conventional elastic pair. So far, no experimental data 
exists to indicate the numerical value of these new strain-gradient constants. Mindlin [13] has 
also shown that in the case of mechanically homogeneous, isotropic and centrosymmetric 
elastic solids, the three versions of the theory yield the same displacement-equations of motion 
and then exhibited their general solution for cases of statical equilibrium. Later, Mindlin and 
Eshel [-16] derived the relations among the stresses and among the traction boundary con- 
ditions for the three forms as well as the necessary and sufficient conditions for positive defi- 
niteness of the strain energy function and a theorem of uniqueness of solutions. 

The linear first strain-gradient theory differs from the conventional theory of elasticity in 
several important aspects : 

(a) Mindlin's displacement-equations of equilibrium contain two material parameters, 11, 
and lz, having dimensions of length. The presence of these two material length parameters 
assures the analytical possibility of size effects which are not predicted by the classical theory. 

(b) When the length parameters mentioned above tend to zero, one recovers the classical 
field equations, the classical constitutive equations and the classical boundary conditions. In 
such a transition to classical elasticity, the order of the governing partial differential equations 
is lowered and the number of the requisite boundary conditions is diminished, i.e., boundary- 
layer effects emerge. 

In the present paper we consider the stress-concentration problem of a circular cylindrical 
hole in a mechanically homogeneous, isotropic and centrosymmetric infinite elastic solid 
subjected, at infinity, to a field of uniaxial tension. Several other stress-concentration problems 
involving a single cavity have been solved in the context of the first strain-gradient theory : 
Cook and Weitsman [17], Weitsman[,18],Hazen and Weitsman [19]. In the first two papers, 
enough symmetry is available so as to eliminate some of the material constants from the 
solution. This simplifies matters and the numerical work can be carried out without having to 
consider fully the question of the admissible ranges of the remaining material constants. In the 
last paper this question is examined in full but the authors give an awkward representation of 
their results, i.e. zones of admissible values of stress. In all these papers, the third form of the 
theory has been used i.e., that version of the theory in which the eighteen additional variables 
in the strain energy function are the eight components of the gradient of rotation and the ten 
components of the fully symmetric part of the gradient of the strain. In the present paper a 
more convenient form is used i.e., that version of the theory in which the additional variables in 
the strain energy function are the eighteen components of the first gradient of the strain. The 
stress-concentration is shown to depend on the radius of the cavity, on the conventional 
Poisson's ratio and on four new material parameters. A complete investigation of the admis- 
sible ranges of these new parameters is given and the effect of each of them on the solution is 
examined. 

1. Strain-Gradient Theory--Basic Equations 

We now recall, Mindlin [13], the fundamental equations governing the linear strain-gradient 
theory of homogeneous, isotropic and centrosymmetric elastic solids. In this connection, we 
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confine our attention to the equilibrium case, refer to rectangular cartesian coordinates and 
use Gibbs's notation and the well known indicial notation. 

Let u be the displacement vector; then the kinematic variables are given by :* 

ei~ = �89 + ui,j) = u(~,i) = ejl = strain tensor, (1.1) 

Xijk = �89 + Uj,U) = U(k,jO = X~kj = strain-gradient tensor. (1.2) 

The strain energy function assumes the form 

w(~, ~)=1 ~/~eii ~jj "{- [s Eij + a 1 Kiik Kkjj -{- a2 Kijjl~ikk 
+ a3 tc,k ~j~k + a4 tc~jk lc~jk + a5 ~cijk tckj~ �9 (1.3) 

We define stresses 

0W 
zij -- O~ij = "cji = Cauchy stress tensor, (1.4) 

~W 
#ijk ~- ~ = #ikj = double stress tensor, (1.5) 

where #~jk have dimensions of force per unit length. These definitions lead to the constitutive 
equations 

Tij = l~*~kk (~ij "Ji- 2#eij, (1.6) 
1 #ijk = 2 a 1 (5 ij l('kpp -~ 2 6 jk ls "~ Ski l~jpp) 

+ 2a2 3jk tCipp + a3 ((~ij tCppk + t~ik 1(,ppj) 

+ 2a4tCijk + as(tCkij + tCjki) , (1.7) 

where 6~j is the Kronecker-delta, 2 and # are the Lam6 constants, a t ... a 5 are five new material 
constants with dimensions of force. 

The stress equations of equilibrium appear as 

Tjk,j--#ijk,ij = 0 in R ,  (1.8) 

and the natural (traction) boundary quantities to be specified on a smooth bounding surface are 

P(,)k =- n j (z jk - -  #ijk,,)-- Dj(niPii ,)  + (Dtn , )n in j# i j ,  on S,  

R(n), = ninj#ijk on S, (1.9) 

where R is the region of space occupied by the material body in question, S is the boundary 
surface of R, n is the unit outward normal to S, P(,) is the surface force per unit area, R(,) is the 
surface double force per unit area and D~ (or {7) are the components of the surface gradient : 

)=( ),,-n, nA 
Substituting equations (1.1), (1.2) in (1.6), (1.7) and the result in (1.8), one obtains the displace- 
ment equations of equilibrium 

(2+2#)(1 -112 V2)VV - u - # ( 1  - l~  Vz)v • V • u = 0,  (1.10) 

where 

l~ = 2 al  + a2 + a3 + a4 + a5 l~ - a3 + 2ag + a5 
2 + 2 #  ' 2# ' (1.11) 

V is the gradient operator and l~ and lz are the two material parameters with dimensions of 
length, mentioned in the introduction. 

We further recall, that Mindlin [-13] has shown that any solution u of (1.10) can be expressed 
in terms of a vector function B and a scalar function Bo according to 

u = B  2 1 2 - 12 VV. B -  ~ ( 6 -  It VZ)V [-r. (1 - l~ VZ)B + B o ] ,  (1.12) 
�9 Here, all quantities without a caret are identical with the respective Mindlin [13] quantities with a caret over them. 
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where B and Bo are solutions of 

(1-/~VZ)VZB = 0 ,  (1-/~V2)VZBo = 0 (1.13) 

respectively, g = (2 + #)/(2 + 2#) and r is the position vector. 
Finally, necessary and sufficient conditions for positive definiteness of the strain energy 

density are, Mindlin and Eshel [16], 

# > 0 ,  3 2 + 2 # > 0 ,  - d l . < 2 / 2 < d l ,  

22>0,  521+222>0,  5 f z < 6 ( d 1 - d 2 ) ( 5 2 1 + 2 2 2 ) ,  (1.14) 

where 

18~/1 - - 2 a l + 4 a z + a 3 + 6 a 4 - 3 a 5 ,  

1 8 a 2 = 2 a l - 4 a 2 - a  3, 3 2 1 = 2 ( a 1 + a 2 + a 3 ) ,  (1.15) 

22 = a4+a5, 3 f =  al + 4 a 2 - 2 a 3 .  

2. Formulat ion of  the Problems  

The material body under consideration occupies a cylindrical region of space R such that 
- o o  < z <  co whose open cross section is D: r o < r <  09 with a boundary curve C: r=r o. 

a.--. Y 

r 

T .  " T  
�9 B- 

�9 BOUNDARY C : 

I I  IL 

�9 R E G I O N  D 

Figure 1. Circular hole in a field of uniaxial tensmn. 

Further, choose cylindrical coordinates r, 0, z such that the z-axis lies along the axis of the 
cylindrical hole (Fig. 1). Let the body be subjected to a uniaxial tension in the x-direction as 
shown in Fig. 1, i.e. 

o n r = r o  : ~ = 0 ,  / ~ = 0 ,  

as r-~ ~ : z-~ rexex = �89 +cos  20)e, er+�89 - c o s  20)%%-�89  20(ereo+eoer) , 

/ ~ 0 ,  (2.1) 

where % er, eo are unit vectors positive in the directions x, r and 0 increasing. We now assume 
that the body is in a state of plane strain parallel to the xy-plane, so that 

, = u (r, 0) e~ + v (r, 0) eo,  u: : 0 .  (2.2) 

From this 

e,,=U~, erO=~O~=�89 

eoo= r-1 (u + V,o), e0= = e=, : ~:= = 0,  (2.3) 

N. N. Eshel, G. Rosenfeld 
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and 

~r~r = U .... GO0 = - - r - 2 ( u + v , o ) + r - l ( u , r + v , o ~ ) ,  

tG~o = Go~ = � 8 9  , 

~orr = r-2 (_  u o + v) + r - i  ( u , . -  v~), (2.4) 

Xo~o = Xoo~ = r-Z(-u+�89 , ~lv,ro), 

Xoo o = r - 2 (2U o + V oo - v) + r -  1 v.r , 

while all other  componen t s  are zero. 
The non-zero  stress componen t s  are 

" % =  ( 2 + 2 # ) u , + 2 r - a ( u + v , o ) ,  Zoo = 2 u , r + ( 2 + Z # ) r - l ( u + v , o ) ,  

V ~ o = # r - a ( U o - v ) + p v . ~ ,  G ~ =  2 r - l ( u + v , o ) + 2 u # ,  (2.5) 

and f rom (2.4) and (1.7) one finds the following non-zero  double  stress componen t s  

ro 2 #~r~ = 2c~t G ~  + (~2 Kr00 "}- ~ 3 K00r , 

ro 21.trOr = rff2#rr0 ----- O~r XrrO'4- �89 KOrr d- �89 KO00 , 

to- 2 #too = 0~2 ~rrr -~ 2c% K~00 + ~5 K00r, 

r 6  2 #rzz = % ~:r~r + 2a2  r o 2 ~ 0 0  + a l r o  2 ~ 00~ , 

r o  2 #Orr = 0~5 t('rrO At- 2~6 tC0rr q- 0{2/s , 

r o  2 #OrO r o  2 1 1 #OOr = 2(Z3 l~rrr'q- 20~51~rOO"]- Or , 

r o  2 #000 ~- ~ KrrO -~- (Z2 t~Orr "~ 2(ZI/~000 , 

r o e  #0zz = al  ro 2 G~o + 2a2 ro 2 K0rr + Ct2 X000, 

ro2gzr~ ro2 1 1 - 2  - 2  #zzr  : g~3  ls "}- 2 a I  ro l~rO 0 + a3 ro ~Coor , 

r o 2 # z O z  = r o 2 # z z O  - 2  1 - 2  1 = a a r o  t % o + ~ a t r o  ~Co~+~3~Cooo,  (2.6) 

where 

e l  = r f f 2 ( a t + a 2 + a 3 + a 4 + a s ) ,  % = r o 2 ( a l + 2 a 2 ) ,  

% = ro 2 (a 1 nt - 2a3),  ~4 = ro 2 (a 3 + 2a4 + as ) ,  (2.7) 

= r o  ~ ( a l  + 2 a 5 ) ,  ~6 = rff Z(a2 + a4) ; 

we also define 

% = ro2 (a 4 + as ) .  (2.8) 

Only four of the seven definitions (2.7), (2.8) are independent ;  e.g. 

% = - 2 c % + 2 ~ 1 - c t 2 ,  % = 2 % + 2 e l - % - 2 e 4 ,  (x6 = - ~ 1 + ~ 2 + ~ 4 .  (2.9) 

We  now note  tha t  on r = r0 : 

n = - G ,  V = e0 �9 (2 .10)  

Thus,  f rom (1.9), (2.1) and  (2.10) the b o u n d a r y  condi t ions  to be specified on r = ro are:  

P(r)r = - z ,  + #r . . . .  + r -  a (#O,r,O-- 2#OrO-- #~oo) = O,  

P(r)O "= - -  "grO q- #rrO,r -~- r - 1  (#Orr-~- #OrO,O- #o00 -~ #too,o) -= O ,  (2.11) 

R{r)r = #~r, = O ,  R(r)o = #r~o = O .  

As r ~ ~ ,  n = e, which together  with equat ions  (1.9) and (2.1) lead to the following bounda ry  
condi t ions : 
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P(~)r = z . ~  � 89  20), P(r)o = Z.o~ - � 8 9  20,  

R(r), = IZr~ --+ O, R(,)o = # ~ o  --+ 0 .  (2 .12)  

In cylindrical coordinates, a stress-field of uniaxial tension, T, in the xy-plane is given by 

z~* = �89 T(1 + cos 20), z~ = - �89 T sin 20,  (2.13) 

r*o = �89 T(1 - cos 20), /i* = 0.  

In this field, ~'~ and/** assume the correct values as r + 0% but on r = ro ~i r 0. We therefore 
add a stress field (~, #) such that  the field (** + , , /** +/~) will satisfy the boundary  conditions on 
r = r o  as well as when r--+ oo. It now follows from (2.11), (2.12) and (2.13) that the boundary  
conditions assume the following form: 

on r = r o :  

- �89 T(1 + cos 20) - % +/z ..... + r-1 (#err,0 - 2/~OrO -/#oo) = 0 ,  

�89 T sin 20 - z,0 +/t,,o# + r -  1 (/Zor~ + tt0,o, ~ _/Zoo ~ +/Z~oo.o) = 0 ,  

/#r, = #,,o = 0 .  (2.14) 

As r--+ oo : 

r,r ~ 0, rr0 ~ 0, #, , ,-~ 0, P~ro ~ 0 .  (2.15) 

For  the field (,, kt) to be the solution, which in turn implies that  (~*+ ~,/t) is the stress field, it 
must  satisfy equations (1.8), (2.14) and (2.15). 

Instead of the stress formulat ion given above, it is advantageous to consider the displace- 
ment formulation of the same problem. Inserting (2.4) in (2.6) and the result together with (2.5) 
in (2.14), yields boundary  conditions in terms of displacement components.  Thus, the complete 
displacement formulation of the boundary  value problem in question is: 

PDE.  (2+2#)(1- /~V2)VV'/~-#(1-122VZ)V xV x u = 0 in D .  (2.16) 

B.C. on r - - r o  : 

ro2P(r)r = u(6r-3 ~1 - -2 ro2 r -1 )+U, r [ - -6 r -2o~ l -  ro2(2+2/ t ) ]  

+ u,..,2cq +U,oo(-2~lq-2o~2-o~4)r-3-bU,oor(OC2+o~4)r -2  

+ v,o (8cq - 0{2 + 0{4) r -  3 _ V,o 2rff 2 r -1  _ V,or (40{1 + 0{2 + C~,) r -  2 

+ V,or, (20{ 1 - ~ r -  1 + V,o0o 0{2 r -  3 

= �89 (1 + c o s  20), 

ro2P(r)omU,o(0{o-50{1-{-30{2-20{4) r - 3  -U,o#r-20 r -  1-1- U,o,(~o- gl q- 23-~2 -1-20{4) r -2  

+ u,o,, (2cq - �89 r -*  + u.ooo (CZo + 0{1 - �89 - �89 + 2v ( - 0{0 q7 e4) r -3  

..~ Ut[IFO 2 r -  1 + 2V,r (0{ ~ __ 0{4) r -  2 - -  V,rltr ~ 2 - -  � 89  1 

+ v oo ( - 20{0 - 6~1 + 2~2 + �89 r -  3 

+  ,oor (0{0 + 0{1 + + �89 + . . . .  0{, 

= - � 8 9  2 sin 20,  

ro 2/~,r~ = 2u(0{o -e l ) r -  2 + 2 u , , ( - %  + 0{1)r -1 + 2U,rr0{1 

+ U,O0 (-- % + 0{1 -- �89 r -  2 + V,o (3Co -- 3el + �89 r -  2 

+ V,or(--0{o + 0{l + �89 -1 

O, 
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10~ • I(X "~1.--2 1 1 --1 ro2kt~o = U , o ( - - 3 % + % - - g  2 q ~  4) +U,Or(~O-F~1--gO~2---~4) r 

+ v(2ao- �89 2 + v ~ ( -  2ao + �89 + *v2 ,~ ~4 

+ V.oo(-~o+~l-�89 - ~  

= 0 .  (2.17) 

As r-~ ~ : 

the conditions in terms of stresses are given by (2.15). The same conditions but in terms of 
displacement are furnished by (2.5)1, (2.5)3, (2.17)3 and (2.17)4, i.e. 

(~+ 2~)~,,+~o~-l(u+ ~ o)-~ o ,  f ' ( u , 0 - 0 + ~ , , - ~  o ,  

2U(ao-  0{1)r - 2  -~ 2/A,r ( -  ~0 -~- g l )  r - 1  Ol - 2/A,rr O~ 1 

+ U,oo(-% + a , -  �89 2 + V o(3eo- 3e, + �89 - 2 

+ V,o, ( -  ao + ~1 + �89 r-1 -+ O, (2.1S) 

U o ( - 3 = o + ~ l - � 8 9 1 8 9 1 8 9 1 8 9  -1  

+ ~ (2~o - �89 r-2 + ~, ( _ 2~o + �89 ~ -* + �89 ~ 

+ ~,oo(- ~o+ ~ -  �89 0. 

3. Solution 

We choose 

B = B(r, O)e~ 

= [ B l ( r  ,0)+B2(r ,0)]ex,  B y = B z = O ,  

Bo=  B03 (r, 0)+Bo,(r ,  0)+Bos(r,  0)+B06 (r, 0), 

such that 

B 1 = A i r ,  r-  1 cos O, 

Bo3 = A3r~) log r ,  

Bo5 = As rg K o (Pl), 

B 2 = AzroKl(pz)  cos 0 ,  

Bo4 -- A4r~r - 2 cos 20,  

Bo6 = A6r~Kz(pl ) cos 20, 

(3.1) 

(3.2) 

where Pl = rill, IO2 = r/la, Ki(x) (i=0, 1, ...., n) are the modified Bessel functions of the second 
kind of order i and Aj (j = 1 . . . . .  6) are dimensionless constants. The functions B and B o 
above satisfy equations (1.13). Rewriting (1.12) in terms of (3.1) we obtain 

= B cos 0 - / 2  (COS 0 B , r - - r  -1  s in  0 B,o),r+ �89 - 6(xB1 +Bo) +Bo2]. , ,  

v = - B sin 0 - l~ r -  1 (cos 0 B # -  r -  1 sin 0 B o),o 

+ +r -1 [ l~V2(xB0-a(xB,  +Bo) +Bod,o �9 
Inserting (3.2)in (3.3) yields 

= i ? - 1  1 . . 2 . . - i  u ~Alrsr  -~A36 ,o  r - � 8 9  ~ KI(Pl ) 

+ {A1 ro [ �89 + 2 (1~ - 122) r -  33 - A2 ro 12 r-1 K2 (P2) 

+A4&~r-S -a6 (1 -6 ) rg[ r -*Kz (p l )+ �89  cos 20,  

v= { A t r ~ [ - � 8 9  + Z( l~- lZz ) r -S] -Azro[ l z r - l  Kz(pz)+�89 

+ A 4 5r~ r -3 - A 6 (1 - 6)ro 2 r -1 K 2 (P 1)} sin 20. (3.4) 

This displacement is single valued and is a solution of (2.16). The boundary conditions as 
r--, oo are clearly satisfied by (3.4) with any set of finite constants A1 . . . . .  A 6. To satisfy the 
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boundary conditions on r = r o, we insert equations (3.4) and the required derivatives in (2.17), 
equate coefficients of like functions of 0 and obtain a system of six linear algebraic equations in 
the unknown constants A1 ... A6" 

b l l  B1 +O+b13B3 +O+ blsB5 +0 = O, 

b21Bl + b2z B2 + O+ b24 B,~ + O+ b26 B6 --- O, 

b31B1+b32B2 +O+O+O+ b36B6 = -1  , 

b41Bl+O+b,3B3+O+b4sB5+ 0 1 

b s t B l + O + O + b s c B 4 + O + b 5 6 B  6 3 

b6tB t+b62B2+0+O+0+b66B6 = 1 , (3.5) 

such that 

# (i = 1, 6), B i = A i ~ .... 

and 

b~l = 

b21 = 

b22  = 

b26 = 

b31 = 

b36  - -  

b4. 5 

b56  = 

b66  = 

where 

ill, b13=-afll ,  b~5=(a-1)[�89 3K,(k~)], 

1 - 2 6 + f i , (  4c~ 48 48) 
kl + P2, 

-6PlK,(k2)-( +Pl-�89 b24=24&a, 
+yklKl(kl)],  

26-2fl2(2-6 ) 4(1-0) { 1 -fi2 
k2 k2 6, b32=~, k 2 

(1-6)(l+f12)K2(k~), b 4 a = - l ,  b43=6, 

-6klKl(k~), b5,=-~2 (1+fl2)-36, b54=-66 ,  

(3+3fi2-66)K2(kl), b6,=b ,  b62=-Kt(k2),  

( 1 - b ) k l K l ( k l ) ,  

(3.6) 

2(1-6))  
~22 j k2 K2 (k2) + 6K, (k2), 

(3.7) 

% ~2 kl ro -.r~ (3.8) 
fit = 2~--7' f i2-  2~ 1 , = l~-' k2 = 12 

Upon solving for B1 . . . .  B 6 the solution of the problem is completed, and one can find any 
field quantity desired; specifically, we wish to compute the hoop stress Zoo. From (2 .5 )2  , (2.13)3, 
(3.4) and (3.6) one finds the total hoop stress as follows 

T ~5 - B3 r2 + Bs(6-1) kl Kx(P,) - k~Ko(O,) 

12 - K 2 ( o 2 )  + - B  6 2~ K1 (p2)l 

ro 4 1- ro z 2-/~ r o 
+6B,6-~ + B6 (6-1)  L o ~KE(pl )  /2 r kl KI (Pl) 

,t k~Ko(p3] } cos 20. (3.9) 
2/t 

Noting that 
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r r o r kl r r o r k 2  
P l  - -  - -  , P2  - -  - -  , 

r o  11 ro  r o  12 ro  

the hoop stress at 0 = ___ �89 for any r, is then found to be 

[ r~  r~//12 12 ) ]  z~o + Zoo (r, 0 = +_ �89 = 1 + B 1 --  
T r" ~, k 2 k 2 

r?~ 6 r +2  r~ k2 - B 36r- ~ +B2 ~ ~ g 2  k --Klr f' 

r~ 2 k2 Ko r - 6 B 4 a 7 + B s ( ~ 5 - 1 ' I ~ k l K t ( ~ o k l ) -  ~ (~/~1)] 

+B6(1-b)  6 7 K 2 kl # r 

,310, 

T~ . 

Finally, the hoop stress on the surface of the cavity at 0 = + ~ is given as 

z~~176176 (r=ro, O = + � 8 9  +B 1 (1 _ 1 2  1~) I~---~ )] T k-~l + + B2 Ke(ke)+2Kl(k2 

- S 3 6 - 6 B 4 b  + U5(6- 1)[k, K , (k,) 

2 k2Ko(kl)J +B6(1 -6 )  [6K2(kl) 

2 - #  k lK t (k l )  - ~ k ~ K o ( k l )  1 . (3.11) 
# 

It should be noted here that all the combinations of Lam6 constants appearing in (3.7), (3.10) 
and (3.11) are determined by Poisson's ratio alone, i.e. 

2 _ v 2 - # _  1 -4v  1 # _ 1 -2v  (3.12) 
2# 1 - 2 v '  # 1 - 2 v '  6 - 2 ( 1 _ v ) , 1 - 6 -  2+2# 2( l -v)"  

Whence, we find that the stress-concentration, (3.10) and the stress-concentration factor (3.11), 
are a function of the five dimensionless parameters v, kl, k2, ill, f12. The last two do not appear 
explicitly in (3.10) and (3.11) but enter in through the boundary conditions on r = to. 

4. Ranges of Material Parameters 

To facilitate numerical computations, the stress-concentration factor has to be expressed in 
terms of independent and dimensionless parameters for which estimates on magnitude can be 
found, 

We define 

11 ( 2 c q  2#~ ~ k 2 (4.1) 
- ~2 = \ 2 + 2 #  ~4/ - kl 

and choose the following as our five independent parameters, 

2 ~o a2 k2 kl = r~ /(2+ 2#~ �89 
v - 2(2+#) '  fll = 2~-al ' f 1 2  = ~ 1 '  ~ ~ -  k77' ~ = ~ 2~--1 / " (4.2) 

Upon entering (4.1) in (3.10) and (3.11), one obtains the stress-concentration and the stress- 
concentration factor, respectively, in terms of (4.2). 
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Since the numerical values of the new material parameters in the strain-gradient theory are 
not known from experiment, ranges of (4.2) are found by resorting to the necessary and suffi- 
cient conditions for positive definiteness of the strain energy density function given by (1.14) 
and (1.15). 

From (1.14)1 and (1.14)2 the range of Poisson's ratio is chosen to be 

0~< v < �89 (4.3) 

In [13, section 12] it is shown that l 2 > 0 (i = 1, 2). This together with (1.11), (1.14)1, (1.14)2 and 
the definitions of el, e4 imply that 

~1 > 0 ,  ~4 >0 ,  

while (1.14)4, (1.15)4 and the definition of so yield 

% > 0 .  

From (1.14)5, (1.15)3, (1.15)4 and the definition of So, Sl, we find 

s o 5 
- -  < ~  - - .  

2cq 4 

This, together with the fact that both So and el are positive, fix the range of//1 as follows 

O < fll < 5.  (4.4) 

The inequalities (1.14)3 and (1.14)6, together with equations (4.1) and (4.2) can now be used to 
determine the ranges of 7 and f12. This yields 

15 l-2v_] ~ 
0 < 7 <  

' 16fll iZ~-vJ ' 

128 32 1 - 2 v  2 1 4 )] ~- 
+ L ) T  - i3//  + 1 - v  ( , (4.5) 

f12 > 1 - 6//1 - - -  f12 _ ]-5 fll + 1 - v 7 2 (1 - ~fll �9 

In order to exhibit the effect of each of the parameters on the stress-concentration, it is con- 
venient to assign a "standard" value to each one of the first four parameters in (4.2) and to 
observe the behavior of the solution as k 1 varies. In addition, variations of the four parameters 
from their standard values are considered so as to be able to see their effect on the stress- 
concentration. 

The admissible range of each of the parameters as well as their standard values are deter- 
mined by above inequalities i.e., each set of values assumed by v, ill, 7 and f12 satisfies equations 
(4.3), (4.4) and (4.5). 

Furthermore, for the purpose of numerical computation, we impose one more restriction. 
Comparing the displacement equations of equilibrium, as given by (2.16), with those of the 
classical theory of elasticity, it is evident that 11 and 12 are important contributors to the differ- 
ences between the two theories. However, it can be shown that if kl ~ ~ and k2 ~ 0% i.e. 
11 ~ 0 and 12 ~ 0 such that 7 and the rest of the parameters remain finite, our solution reduces to 
the solution of the same problem in classical elasticity. This, together with the fact that results 
based on the classical theory of elasticity have been substantiated by experiment, lead us to 
believe that 11 and 12 are indeed small as compared to unity. In view of this we select unity as 
the smallest value of kl. 

Finally, we point out that an examination of equations (4.1) and (4.2) reveals that increasing 
kl while keeping 2, #, ill, 7 and//2 constant implies a decrease in 2sl with respect to (2+2#), 
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which in turn requires a decrease of c% with respect to 2/~ so as to keep ~ constant; simul- 
taneously, a decrease in c~ o and c~ 2 is required in order to keep fit and f2 constant ; i.e. the strain- 
gradient effects disappear as kt increases. This observation is compatible with the results men- 
tioned above when passing to the limit as kl ~ oo and k2 ~ oe. 

5. Numerical  Results  

The computations are carried out so as to obtain the stress concentration factor as a function of 
kl when only one among the remaining four parameters is allowed to vary, while the others are 
kept fixed at their respective standard values. The resulfs of these computations, for 0 = +_ �89 
are shown in Figures 2-5. 

In Fig. 6, the stress-concentration is plotted versus the non-dimensional distance r/r o, 
where r measures the distance from the center of the cavity along the rays 0 -- + �89 Results are 
shown for various values of kt while the remaining parameters are kept fixed at their standard 
values : v = 0.25,//t = 0.50, flz = 0.50, ;~ = 0.50. 

/ 
3.o ~ 

k_ 025 

k_ 2ooo 

13, -- O.~O(ST'Ol t3a 0.5C (ST'O) I~-- O.50( 

1.0 
I 2 4 6 8 I0 20  

k, =rol l ,  

Figure 2. Stress-concentration factor at r = to  and 0 = _+~n for various values of Poisson's ratio. 

30 40 50 

t~xamination of Figures 2-5, reveals several interesting characteristics of the solution. Com- 
paring Figure 3 to Figure 4, one finds that the stress-concentration factor at r =  ro and 0 = 
_+ ~ is only slightly sensitive to changes in/ / t  and somewhat more sensitive to variations in//2 
which unlike f t  can assume negative values. This is manifested when kt takes on intermediate 
values. Comparison of Figures 3 and 4 to Figures 2 and 5 reveals that the stress-concentration 
factor is much more sensitive to variations in v and 7 than it is to changes in/?t and//2. This 
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Figure 3. Stress-concentration factor at r = ro and 0 = + �89 for various values of/31. 
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Figure 4. Stress concentration factor at r = ro and 0 = ___ �89 for various values of/?2. 
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Figure  5. S t ress -concent ra t ion  factor  at  r = ro and  0 = +__ �89 for va r ious  values  of 7. 
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is clearly manifested when k 1 takes on intermediate values. It is interesting to note that no ratio 
of couple-stress constants analogous to fll and fi2 appears in the Mindlin and Tiersten's [7] 
result for the cylindrical hole; but one does appear in their stress-concentration factor for the 
spherical cavity with a similar insensitivity. All this is clearly in contrast to the solution ob- 
tained in classical elasticity, where the stress-concentration factor at r = r o assumes a maximum 
value of 3 independent of material properties and the radius of the cavity. 

Consideration of Figures 2,3,4, and 5 shows that the stress-concentration factor approaches 
3 as kl increases. This confirms Mindlin and Tiersten's main result. However, Figures 2 and 4 
reveal that when Poisson's ratio is greater than about �89 and when f12 assumes negative values, 
the stress-concentration factor may exceed 3; in fact, it may reach a max. value at an inter- 
mediate value of kl, and then approach the classical value of 3 from above as clearly seen 
when v = 0.45. 

Examination of Fig. 6 reveals that the solution of classical elasticity and the present solution 
become indistinguishable as r/ro increases. 

Comparing the results of the present paper with those of Hazen and Weitsman [19], we 
observe that in the case of a cylindrical hole in a field of uniaxial tension, only four new material 
parameters (i.e. four ratios of material constants) appear in the solution although there are 
five new material constants in the constitutive equations. In the case of a spherical cavity in a 
field of uniaxial tension [19], five new material parameters appear. 

While the results of this paper confirm the main results given in [19], the representation of 
results in "zones of admissible values of stress" is avoided here. The choice of the parameters 
and the numerical computations have been carried out so that the behavior of the hoop stresses 
as a function of the material parameters could be clearly exhibited. 
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